

Chiral symmetry on a lattice with hopping interactions

Takanori Sugihara

RIKEN BNL Research Center

Brookhaven National Laboratory

hep-lat/0304015 to appear in PRD

Introduction

Problems of lattice fermion

- Species doubling
- Deviation of the propagator

Staggered, SLAC, Wilson, Kaplan, and Overlap.

Introduction

Problems of lattice fermion

- Species doubling
- Deviation of the propagator

This talk

- Lanczos factor
- Ultralocal hopping interactions

Hybrid of Wilson and SLAC approaches

Momentum-space rep. on a lattice

Continuum theory for (1+1)-d Dirac spinor

$$H = -i \int dx \bar{\psi} \gamma^1 \partial_1 \psi$$

Momentum-space rep. on a lattice

Continuum theory for (1+1)-d Dirac spinor

$$H = -i \int dx \bar{\psi} \gamma^1 \partial_1 \psi$$

Momentum-space rep. on a lattice

$$H = \sum_{l=-N/2+1}^{N/2} p_l \bar{\zeta}_l \gamma^1 \zeta_l, \quad p_l = \frac{2\pi l}{N}$$

Discrete Fourier trans. $\psi_n = \frac{1}{\sqrt{N}} \sum_l e^{i2\pi l n/N} \zeta_l$

What is the real-space rep of p?

Consider a function

$$s(p) \equiv \sum_{\alpha=1}^{M} \frac{2(-1)^{\alpha-1}}{\alpha} \sin(\alpha p)$$

In the limit $M \to \infty$

$$p = \lim_{M \to \infty} s(p)$$

Periodicity of $2\pi \to \text{Doubler at } |p| = \pi$.

Blue: continuum p

Yellow: s(p) with M=5

Blue: continuum p

Yellow: s(p) with M=5

In addition to usual doubler at the momentum boundary

Blue: continuum p

Yellow: s(p) with M=5

Truncation with a finite M causes oscillation around the correct result.

Two types of doublers

- Jump at the boundary $|p|=\pi$
- Oscillation (Gibbs phenomenon)

Two types of doublers

- Jump at the boundary $|p|=\pi$
- Oscillation (Gibbs phenomenon)

Modify the coefficients

$$s(p) = \sum_{\alpha=1}^{M} F_{\alpha} \frac{2(-1)^{\alpha-1}}{\alpha} \sin(\alpha p)$$

Lanczos factor:
$$F_{\alpha} = \frac{M+1}{\pi \alpha} \sin \left(\frac{\pi \alpha}{M+1} \right)$$

Blue: continuum p

Yellow: s(p) with M=5

The Lanczos factor removes the oscillation.

Blue: continuum p

Yellow: s(p) with M=5

The Lanczos factor removes the oscillation.

Removal of the doubler at $|p|=\pi$

Momentum-space Hamiltonian $(s_l \equiv s(p_l))$

$$H = \sum_{l} \zeta_{l}^{\dagger} \begin{pmatrix} s_{l} & 0 \\ 0 & -s_{l} \end{pmatrix} \zeta_{l}$$

Removal of the doubler at $|p| = \pi$

Momentum-space Hamiltonian $(s_l \equiv s(p_l))$

$$H = \sum_{l} \zeta_{l}^{\dagger} \begin{pmatrix} s_{l} & 0 \\ 0 & -s_{l} \end{pmatrix} \zeta_{l}$$

Introduce interactions to remove the doubler

$$H = \sum_{l} \zeta_{l}^{\dagger} \begin{pmatrix} s_{l} & c_{l} \\ c_{l} & -s_{l} \end{pmatrix} \zeta_{l}$$

Wilson-like interactions c_l

Diagonalization of H

$$H = \sum_{l} \zeta_{l}^{\prime \dagger} \begin{pmatrix} \sqrt{s_{l}^{2} + c_{l}^{2}} & 0 \\ 0 & -\sqrt{s_{l}^{2} + c_{l}^{2}} \end{pmatrix} \zeta_{l}^{\prime}$$

Use c_l to remove the doubler.

$$c(p) = \frac{C_0}{2} + \sum_{\alpha=1}^{M} C_{\alpha} \cos(\alpha p)$$

where $c_l \equiv c(p_l)$.

Blue: continuum p^2

Green: $s^2(p)$

Blue: continuum p^2

Green: $s^2(p)$

Raise the hemlines

Blue: continuum p^2

Green: $s^2(p)$

Red: $c^2(p)$

Blue: continuum p^2

Green: $s^2(p)$

Red: $c^2(p)$

Yellow: Green+Red

Yellow is almost p^2 . The doubler removed.

Energy vs momentum

Blue: continuum $\pm p$

Green: $\pm s(p)$

Yellow: $\pm \sqrt{s^2(p) + c^2(p)}$

Good agreement except for a small deviation at |p| = 2.3.

Chiral charge Q_5

In the new basis, γ_5 becomes

$$\gamma_5' = \frac{s_l + k_l}{k_l^2 + s_l k_l} \begin{pmatrix} s_l & -c_l \\ -c_l & -s_l \end{pmatrix}$$

for l > 0

$$\gamma_5' = \frac{-s_l + k_l}{k_l^2 - s_l k_l} \begin{pmatrix} s_l & c_l \\ c_l & -s_l \end{pmatrix}$$

for l < 0, and $\gamma_5' = \gamma_5$ for l = 0.

Chiral property

Red: $(\gamma_5')_{1,1}$

Green: $-(\gamma_5')_{1,2}$

$$[H,Q_5] \sim 0$$

Approximate chiral sym. at low energy.

Real-space Hamiltonian

Real-space representation for gauge theory

$$H = \sum_{n=1}^{N} \left\{ \frac{1}{2a} \sum_{\alpha=1}^{M} \left[iS_{\alpha}(\bar{\psi}_{n+\alpha}\gamma^{1}\psi_{n} - \bar{\psi}_{n}\gamma^{1}\psi_{n+\alpha}) + C_{\alpha}(\bar{\psi}_{n+\alpha}\psi_{n} + \bar{\psi}_{n}\psi_{n+\alpha}) \right] + \left(m + \frac{C_{0}}{2a} \right) \bar{\psi}_{n}\psi_{n} \right\}$$

Take care of doubler of each direction to extend the method to higher dimensions.

Euclidean action

For Monte-Carlo analysis

$$S_{\rm E} = \sum_{n} \left\{ \frac{1}{2a} \sum_{\alpha=1}^{M} \sum_{\mu=1}^{2} \left[S_{\alpha} (\bar{\psi}_{n} \gamma_{\mu} \psi_{n+\alpha \hat{\mu}} - \bar{\psi}_{n+\alpha \hat{\mu}} \gamma_{\mu} \psi_{n}) \right] \right\}$$

$$+C_{\alpha}(\bar{\psi}_{n}\psi_{n+\alpha\hat{\mu}}+\bar{\psi}_{n+\alpha\hat{\mu}}\psi_{n})\right]+\left(m+\frac{C_{0}}{a}\right)\bar{\psi}_{n}\psi_{n}$$

The continuum limit $a \to 0$ is taken with the parameter M fixed.

Conclusion

Explicit breaking of chiral symmetry has been compressed to high energy with the Lanczos factor and ultralocal hopping interactions.

- ullet Chiral symmetry with small M
- Good agreement with the continuum
- Systematic improvement with M

Check if gauge fields affect chiral properties.